【常用的导数公式表】在微积分的学习过程中,导数是研究函数变化率的重要工具。掌握常见的导数公式,有助于快速求解各类函数的导数问题。本文将对一些常用的导数公式进行总结,并以表格的形式呈现,便于查阅和记忆。
一、基本初等函数的导数
函数形式 | 导数 |
$ f(x) = C $(C为常数) | $ f'(x) = 0 $ |
$ f(x) = x^n $(n为实数) | $ f'(x) = nx^{n-1} $ |
$ f(x) = \sin x $ | $ f'(x) = \cos x $ |
$ f(x) = \cos x $ | $ f'(x) = -\sin x $ |
$ f(x) = \tan x $ | $ f'(x) = \sec^2 x $ |
$ f(x) = \cot x $ | $ f'(x) = -\csc^2 x $ |
$ f(x) = \sec x $ | $ f'(x) = \sec x \tan x $ |
$ f(x) = \csc x $ | $ f'(x) = -\csc x \cot x $ |
二、指数与对数函数的导数
函数形式 | 导数 |
$ f(x) = a^x $(a>0, a≠1) | $ f'(x) = a^x \ln a $ |
$ f(x) = e^x $ | $ f'(x) = e^x $ |
$ f(x) = \log_a x $(a>0, a≠1) | $ f'(x) = \frac{1}{x \ln a} $ |
$ f(x) = \ln x $ | $ f'(x) = \frac{1}{x} $ |
三、反三角函数的导数
函数形式 | 导数 | ||
$ f(x) = \arcsin x $ | $ f'(x) = \frac{1}{\sqrt{1 - x^2}} $ | ||
$ f(x) = \arccos x $ | $ f'(x) = -\frac{1}{\sqrt{1 - x^2}} $ | ||
$ f(x) = \arctan x $ | $ f'(x) = \frac{1}{1 + x^2} $ | ||
$ f(x) = \text{arccot } x $ | $ f'(x) = -\frac{1}{1 + x^2} $ | ||
$ f(x) = \text{arcsec } x $ | $ f'(x) = \frac{1}{ | x | \sqrt{x^2 - 1}} $ |
$ f(x) = \text{arccsc } x $ | $ f'(x) = -\frac{1}{ | x | \sqrt{x^2 - 1}} $ |
四、导数的运算法则
运算规则 | 表达式 |
和差法则 | $ (f \pm g)' = f' \pm g' $ |
积法则 | $ (fg)' = f'g + fg' $ |
商法则 | $ \left( \frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} $ |
链式法则 | $ (f(g(x)))' = f'(g(x)) \cdot g'(x) $ |
五、小结
导数公式是微积分学习的基础内容,熟练掌握这些公式可以提高解题效率,减少计算错误。通过结合导数的运算法则,可以处理更复杂的函数求导问题。建议在实际应用中多加练习,逐步加深对导数概念的理解。
以上内容为常用导数公式的整理,适用于数学、物理、工程等领域的基础学习与复习。